Exam. Code : 103204
 Subject Code : 1120

B.A./B.Sc. $4^{\text {th }}$ Semester
MATHEMATICS

Paper-I

(Statics \& Vector Calculus)

Time Allowed-Three Hours] [Maximum Marks-50

Note :- Do any five questions, selecting at least two questions from each section. All questions carry equal marks.

SECTION-A

1. (a) If two forces P and Q act along OA and OB and their resultant meets the line $A B$ in the point C , find the position of the point C in which their resultant cuts AB .
(b) The ends of an inelastic string 0.17 m long are attached to two points A and B, 0.13 m apart in the same horizontal line. A weight of 4 kg . is attached to the point O of the string 0.05 m from end A . Find the tension in each portion of the string.
2. (a) P and Q are magnitudes of two like parallel forces. If first force be moved parallel to itself through a distance x, show that their resultant moves through a distance $\frac{P x}{P+Q}$.
(b) Apply Varignon's theorem to find the moment of a force of 200 kg . wt. lying in the XY-plane and acting at the point $(1,2)$ and directed away from the origin O about the origin O . The force makes an angle of 30° with the X-axis.
3. (a) Three like parallel forces of magnitude $2 P+Q$, $4 \mathrm{P}-\mathrm{Q}$ and 8 Newton act at the vertices of a triangle. Find P and Q if the resultant of the three parallel forces passes through the centroid of the triangie.
(b) ABCDEF is a regular hexagon. Forces $\mathrm{P}, 2 \mathrm{P}, 3 \mathrm{P}$, $2 \mathrm{P}, 5 \mathrm{P}, 6 \mathrm{P}$ act along $\mathrm{AB}, \mathrm{BC}, \mathrm{DC}, \mathrm{ED}, \mathrm{EF}$ and $A F$, respectively. Show that the six forces are equivalent to a couple and find its moment.
4. (a) Masses 2, 4, 6, 5, x, y kgs. are placed at the corners $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ of a regular hexagon. Find the values of x and y so that the $C . G$. coincides with the centre of hexagon.
(b) A ladder of weight W rests with one end against a smooth vertical wall and with the other resting on a smooth floor. If the inclination of the ladder to the horizon be 60°, find the horizontal force that must be applied to the lower end to prevent the ladder from sliding down.
5. (a) A body is placed on a rough plane inclined to the horizon at an angle greater than the angle of friction and is supported by a force acting parallel to the plane and along a line of greatest slope. Find the limits between which the force must lie.
(b) If the force which acting parallel to a rough plane of inclination α to the horizon is just sufficient to draw a weight up by n times the force which will just be on the point of sliding down, show that the $\tan \alpha=\mu \frac{n+1}{n-1}$.

SECTION-B

6. (a) Prove that the necessary and sufficient condition for the vector function $\ddot{\mathrm{f}}(\mathrm{t})$ to have constant direction is $\overrightarrow{\mathrm{f}} \times \frac{\mathrm{d} \overrightarrow{\mathrm{f}}}{\mathrm{dt}}=\overrightarrow{0}$.
(b) Show that:
(i) $\nabla(\vec{r} \cdot \vec{a})=\vec{a}$
(ii) $\nabla[\vec{r}, \vec{a}, \vec{b}]=\vec{a} \times \vec{b}$, where \vec{a} and \vec{b} are constant vectors.
7. (a) Find the directional derivative of $\phi(x, y, z)=$ $x^{2} y z+4 x z^{2}$ at the point $(1,-2,1)$ in the direction of $2 \hat{i}-\hat{j}-2 \hat{k}$.
(b) If \vec{a} is a constant vector, then show that

$$
\nabla \times\left(\frac{\vec{a} \times \vec{r}}{r^{n}}\right)=\frac{2-n}{r^{n}}+\frac{n(\vec{a} \cdot \vec{r})}{r^{n+2}} \vec{r}
$$

8. (a) Verify divergence theorem for
$\overrightarrow{\mathrm{A}}=4 \mathrm{x} \hat{\mathrm{i}}-2 \mathrm{y}^{2} \hat{\mathrm{j}}+\mathrm{z}^{2} \hat{\mathrm{k}}$ taken over the region bounded by $x^{2}+y^{2}=4, z=0$ and $z=3$.
(b) Verify Green's theorem in the plane for $\oint_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right]$, where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.
9. (a) By transforming to triple integral evaluate

$$
I=\iint_{S}\left(x^{3} d y d z+x^{2} y d z d x+x^{2} z d x d y\right)
$$

where S is the closed surface bounded by the plane $\mathrm{z}=0, \mathrm{z}=\mathrm{b}$ and the cylinder $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2}$.
(b) If $\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{dr}}=\overrightarrow{0}$ show that $\overrightarrow{\mathrm{r}}=$ constant.
10. (a) State and prove Stoke's theorem.
(b) Apply Green's theorem in plane to evaluate $\oint_{C}[(y-\sin x) d x+\cos x d y]$, where C is the triangle enclosed by the lines $\mathrm{y}=0,2 \mathrm{x}=\pi$, $\pi y=2 x$.

